MME 2024 Summer Workshop

Planning for:

Public Health & Climate Resiliency

Gage Belko, AICP, Associate Planner | MCKENNA

Gage Belko, AICP

Associate Planner

Comprehensive (master) planning

Parks and recreation planning

Transportation planning

Sustainability planning

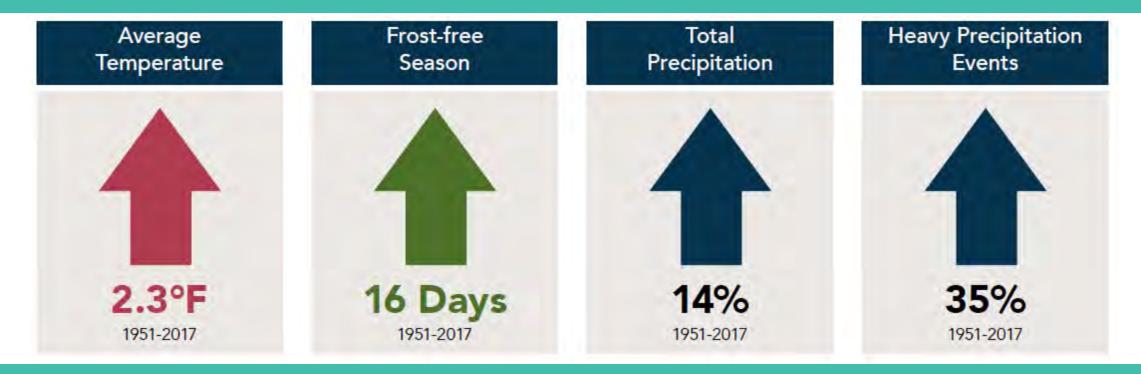
Zoning administration

Public engagement

Urban design

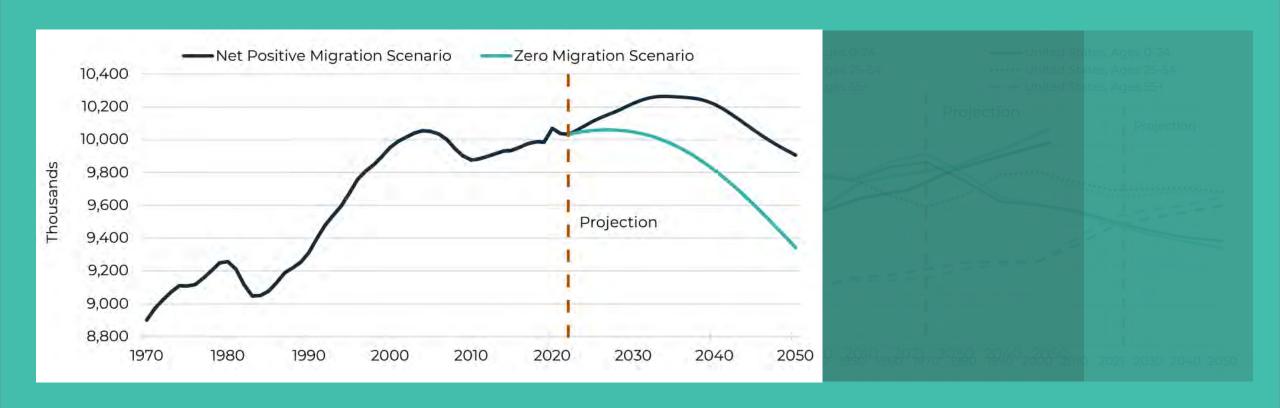
Agenda

Why Plan for Public Health and Climate Resiliency?

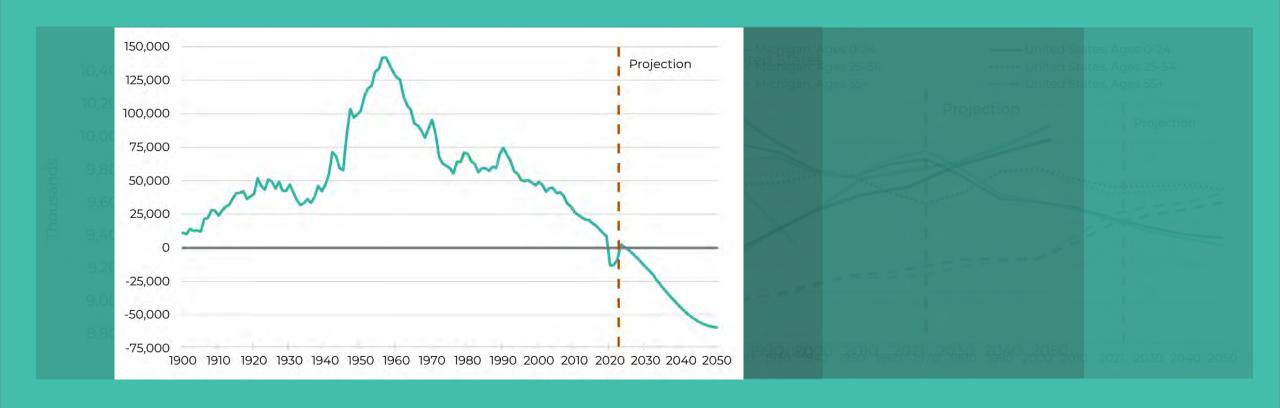

Planning for the Inevitable

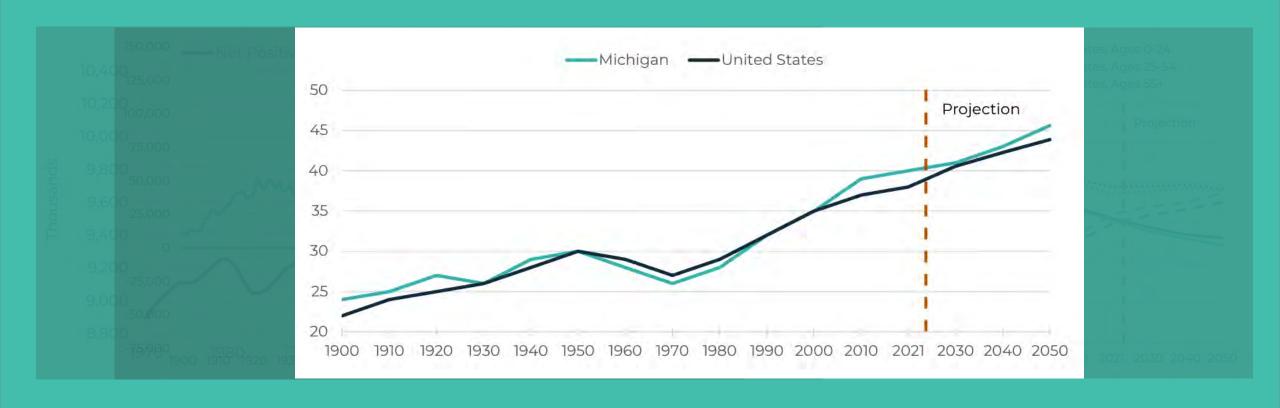
- Aging in Place & Active Transportation
- Urban Heat Mitigation & Natural Feature Preservation
- Stormwater Management & Coastal Resiliency

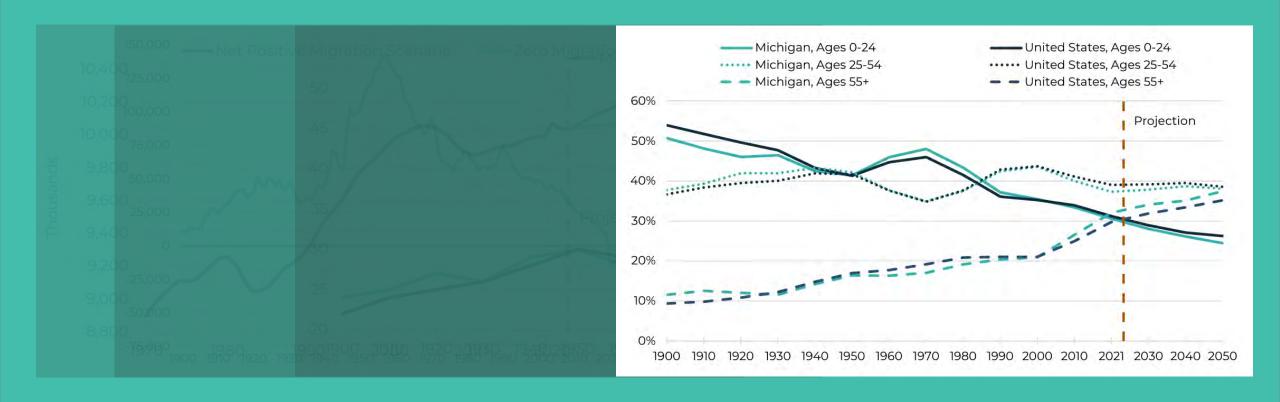
Final Thoughts

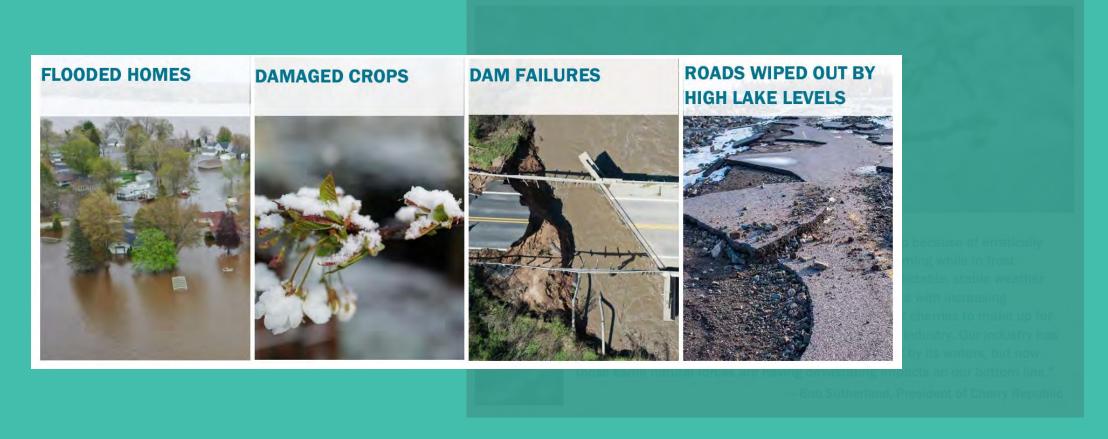

The Great Lakes Region is moving up...

Source: Michigan State University, School of Planning, Design, and Construction; MSU-Extension; Michigan Department of Health and Human Services. Climate and health adaptation planning guide for Michigan communities. 2020









Source: Michigan Department of Environment, Great Lakes, and Energy. MI Healthy Climate Plan, 2022.

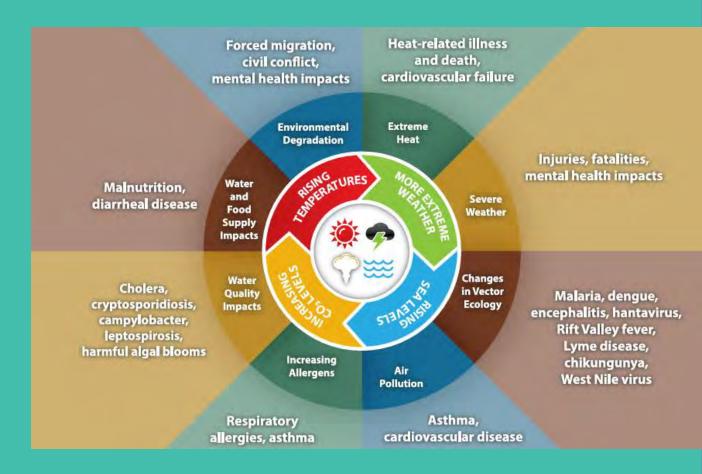
Source: Michigan Department of Environment, Great Lakes, and Energy. MI Healthy Climate Plan, 2022.

- Recreation and tourism
- Agriculture

ALSO

- Property values
- Small business success
- Quality of life

APPROXIMATE ECONOMIC IMPACT IN MICHIGAN PER YEAR


- Recreational Hunting = \$11 Billion
- Recreational Fishing = \$2 Billion
- Recreational Boating = \$3.9 Billion²³
- Winter Recreation = \$3 Billion
- Birdwatching = \$40 Billion (Nationally)
- Agricutlure = \$70 Billion

Source: Great Lakes Business Network. The costs of climate change for Michigan: Great Lakes State at risk. Accessed: July 8, 2024.

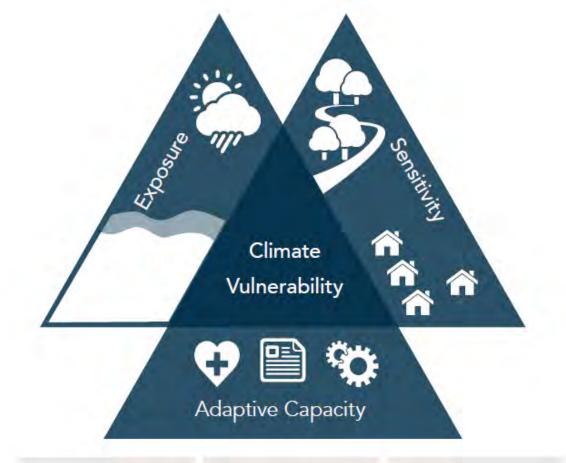
- Heat-related illnesses and death
- Zoonotic / vector diseases
- Allergy and asthma attacks
- Mental and physical health impacts
- Disrupted medical needs


Source: Centers for Disease Control and Prevention. Preparing for the Regional Impacts of Climate Change in the United States, 2020.

Impacts are not felt equally...

- Children
- Elderly
- Exposed workers
- Pregnant women
- Low-income individuals
- Disabled individuals

Source: Centers for Disease Control and Prevention. Preparing for the Regional Impacts of Climate Change in the United States, 2020.



Impacts are not felt equally...

SENSITIVITY + EXPOSURE + CAPACITY

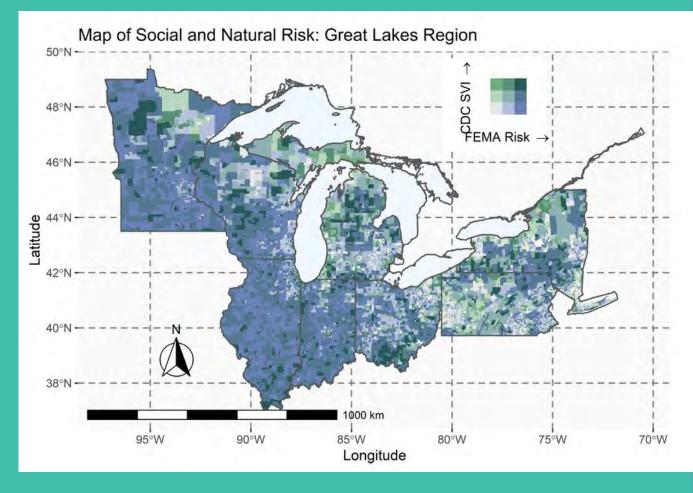
Source: Michigan State University, School of Planning, Design, and Construction; MSU-Extension; Michigan Department of Health and Human Services

MME Summer Workshop | July 16-19, 2024

EXPOSURE

- Area impacted by climate hazard(s)
- Severity of climate hazard(s)
- Frequency of climate hazards

ADAPTIVE CAPACITY


- Mobilizable response resources
- Information, skills & communication
- Institutional and social capital

SENSITIVITY

- Household & community characteristics
- Quality of housing & other physical systems
- Functionality of, access to services & utilities

Impacts are not felt equally...

VULNERABILITY + RISK

Source: Van Berkle, et al. Great Lakes Integrated Sciences and Assessments. Planning for Climate Migration in Great Lake Legacy Cities, 2022.

Equitable interventions...

SENSITIVITY + EXPOSURE

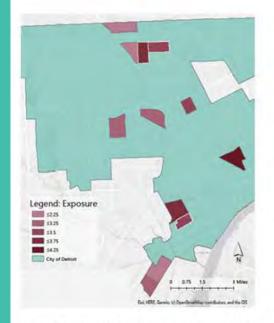


Figure 6: Tracts graded on Exposure metrics, selected tracts highlighted

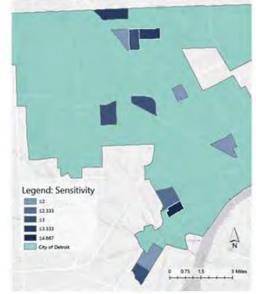


Figure 7: Tracts graded on Sensitivity metrics, selected tracts highlighted

Source: Belko, et al. University of Michigan. Detroit's Strategic Urban Forest Plan, 2020.

MME Summer Workshop | July 16-19, 2024

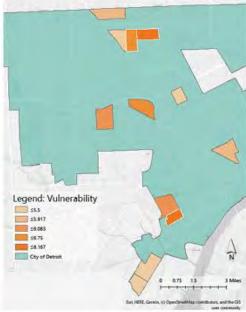
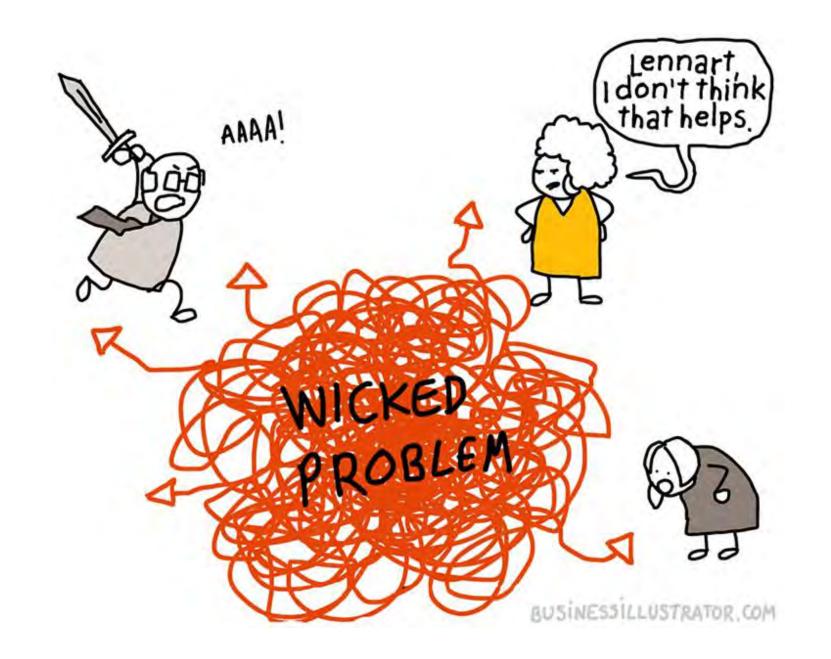



Figure 8: Tracts graded on combined metrics, selected tracts highlighted

What is Aging in Place (AIP)?

Aging in Place (AIP) describes the ability to stay in your community (and thriving) through all stages of life – from childhood to old age.

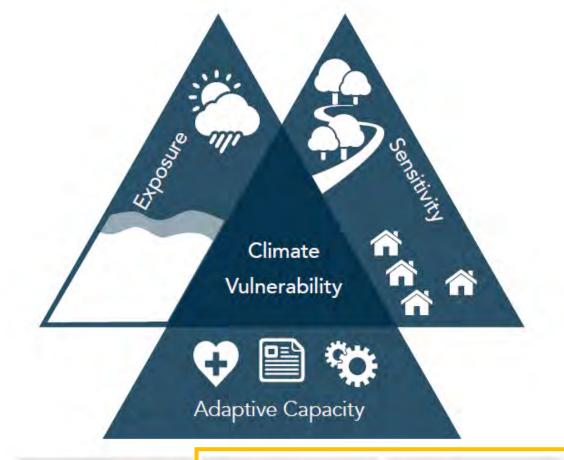
AIP planning helps people live *healthier lifestyles*, both physically and mentally.

- Barrier-free entryways
- Roll-in showers
- Safe, stable stairways with handrails
- Sitting- and standing-height countertops
- Easy-use faucets and handles
- Watertight roofs and quality heating

- Multi-modal / active transportation
- Quality stage-of-life housing
- Parks with multiple amenities
- Multigenerational programming / events
- Diversified businesses

What is Active Transportation?

Multi-modal transportation, non-motorized transportation, Complete Streets...these terms all describe a system of mobility that supports access – getting what you need independently and safely, no matter your age, ability, or income.


- "15-Minute City", localized economies
- Transit-oriented, mixed-use development
- Growth boundaries
- Multi-use paths, signage
- Reduced parking requirements

Relationship to Public Health & Climate Resiliency

- Reduced car dependence (fewer emissions)
- Housing diversity / security (missing middle housing)
- Land use efficiencies (higher densities)
- Mental and physical health benefits (social capital, wellness, resiliency)

EXPOSURE

- Area impacted by climate hazard(s)
- Severity of climate hazard(s)
- Frequency of climate hazards

ADAPTIVE CAPACITY

- Mobilizable response resources
- Information, skills & communication
- Institutional and social capital

SENSITIVITY

- Household & community characteristics
- Quality of housing & other physical systems
- Functionality of, access to services & utilities

MME Summer Workshop | July 16-19, 2024

Case Study: Marine City

Challenge(s)

- Aging population
- Aging homes and infrastructure

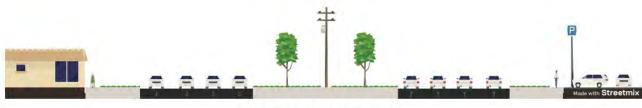
Solution(s)

- Zoning for:
 - o Duplex conversions, ADUs, cluster housing
 - Missing middle (see also: ULI Attainable Housing)
 - Multifamily senior housing, assisted living
- Home improvement program (see also: Southfield CHORE program)

Case Study: Royal Oak Township

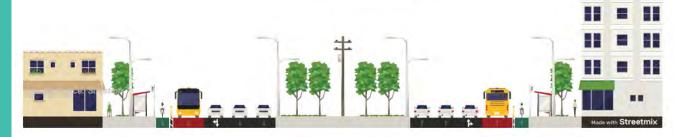
Challenge(s)

- Sidewalk / route gaps
- Dangerous crosswalks, intersections
- High impervious surface area
- Limited land availability

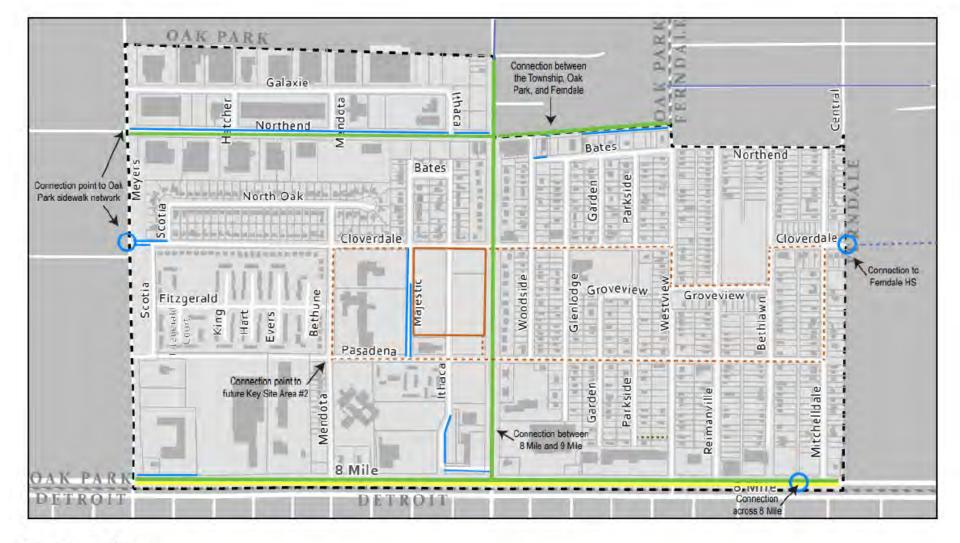

Solution(s)

- Prioritize Safe Routes to School
- Increase transit and NMT capacity through road diets
- Landscaped pedestrian islands and transit stops

MME Summer Workshop | July 16-19, 2024


Current 8 Mile (No Turn Lanes)

← Detroit | Royal Oak Township →



Future 8 Mile (No Turn Lanes)

← Detroit | Royal Oak Township →

Future New Transportation Facilities

Royal Oak Township

March 5, 2024

Case Study: Sustainable Rochester

В	Mob	Mobility		TIMEFRAME	PARTNERSHIPS
STRATEGIES + ACTIONS	B.1	Complete a City of Rochester Mobility Plan to plan infrastructure, operations, technology and behavioral strategies to improve network function in the City.	С	1+ years	CITY, DPW, MDOT, DDA, PC, CC, CM, BO
	B.2	Set an overall Citywide Vehicle Level Of Service (LOS) goal of C and consider Multimodal Level of Service indicators in all traffic evaluation.	В	1 year	CITY, DPW, CC, PC, DDA
	B.3	Identify high priority planned trail, biking, and pedestrian connections and amenities in the City for near-term mobility improvements. Specifically consider strategic placement of bike lanes, bicycle racks, and designated cut out lanes for ridesharing pickups and drop-offs.	Α	< 6 Months	CITY, DPW, CM
	B.4	Consider piloting a bike-sharing program.	С	1+ years	сіту, сс

MME Summer Workshop | July 16-19, 2024

WALKABILITY

TRAFFIC

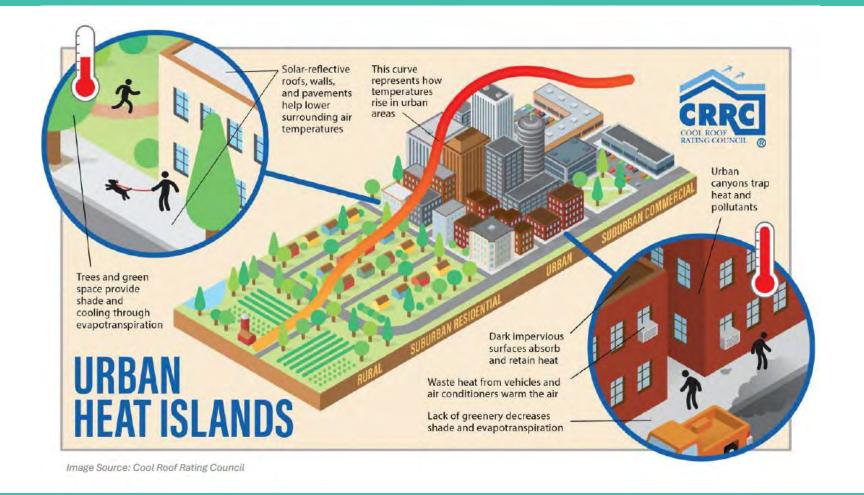
TRAVEL

NONMOTORIZED INFRASTRUCTURE

DEVELOPMENT COMPONENT	INDICATOR	BASELINE	TARGET / FUTURE TREND
at	4.1 Regional National Walkability Index	4.3 - 11.2 walkability index score	Grow
4 Walkability	4.2 Local Intersection Density	20.8 - 192.3 / square mile	10% increase
-	5.1 Regional Overall Traffic Counts	8,833 - 31,799 AADT	Maintain baseline
5 Traffic	5.2 Local Trip Generation	Site Specific - ITE peak hour trip generation average of adjacent parcel(s)	5% higher trip generation than average of adjacent parcel(s)
- C	6.1 Regional Average Commute Time	27.7 minutes	Reduce
6 Travel Time	6.2 Local Intersection Delay	Site specific	15% higher peak hour intersection delay
d#8	7.1 Regional Regional Nonmotorized Infrastructure	2,291 miles	Grow
7 Nonmotorized Infrastructure	7.2 Local Nonmotorized Transportation Infrastructure	61 miles	15% Increase

Case Study: Sustainable Rochester

E	Stro	ong Neighborhoods	PRIORITY	TIMEFRAME	PARTNERSHIPS
+ ACTIONS	E.1	Consider developing a local affordable housing incentive program and work with the Oakland County Community & Home Improvement Division to coordinate implementation.	c	1+ years	UC, CITY, DDA
STRATEGIES	E.2	Consider to implement the local historic district, historic commission, and historic preservation guidelines and work with the Oakland County Community Historic Commission and the Rochester-Avon Historical Society to coordinate implementation.	C	1+ years	BO, CITY, DDA


DEVELOPMENT COMPONENT	INDICATOR	BASELINE	TARGET/ FUTURE TREND
15	15.1 Regional Housing Tenure & Type	36% of housing stock multiple family / 37% of housing stock renter occupied	Graw
Housing Mix	15.2 Local Number of Multifamily Units	2,144 units	20% Increase of total multifamily units
16	16.1 Regional Percent of Households with Housing Cost Burden	17.2% (mortgage) / 44.2% (renters)	Maintain baseline
Housing Affordability	16.2 Local Median Unit Price	\$361,735 (median house value) / \$861 (median rent)	10% of units at median housing cost

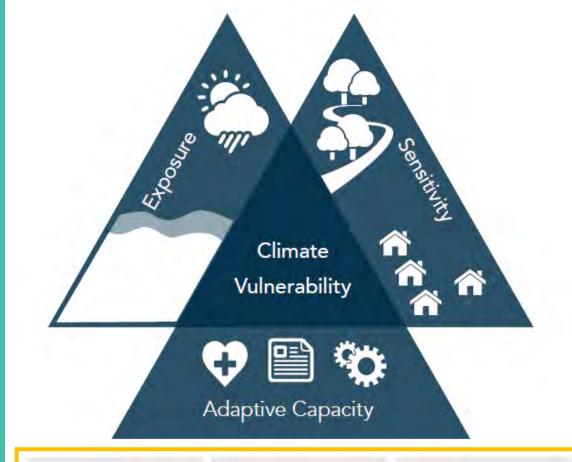
What are Urban Heat Islands (UHI)?

Preserve...Conserve...Mitigate?

Mitigating UHIs (i.e., reducing their impact) is a multi-pronged approach. The preservation (or dedicated conservation) of existing natural areas is a good start by ensuring a limit or boundary to intensive development...but there are other strategies for consideration.

- Residential street trees
- Rooftop gardens
- LEED building standards

- Urban forestry / agriculture
- Public parks, green and blue spaces
- Public education programs, interpretive signage
- Reflective building materials, LEED standards
- Cooling centers and shade structures



Relationship to Public Health & Climate Resiliency

- Minimizing impacts of extreme temperatures (more shade, shelter)
- Increasing biodiversity (habitats, food sources, and migratory patterns)
- Engaged public (education, empowerment, visible interventions)
- Mental and physical health benefits
 (green/blue natural areas, physical activity, access to critical services)

EXPOSURE

- Area impacted by climate hazard(s)
- Severity of climate hazard(s)
- Frequency of climate hazards

ADAPTIVE CAPACITY

- Mobilizable response resources
- Information, skills & communication
- Institutional and social capital

SENSITIVITY

- Household & community characteristics
- Quality of housing & other physical systems
- Functionality of, access to services & utilities

MME Summer Workshop | July 16-19, 2024

Case Study: Birmingham

Challenge(s)

- Additional shade, shelter, and vegetation
- Accessibility to and through parks

Solution(s)

- Preservation is easier than replacement
- Prioritize tree and pollinator garden plantings, focusing on native species
- ADA-compliant restrooms, paths, miniparks and pop-up parks
- Incentivize sustainable building practices

New Park Space

Mini Parks and Undedicated Public Lands. Since Birmingham is built out, there are few opportunities to create new park space. However, there are opportunities to leverage existing vacant land to enhance the network. Existing mini-parks are included in the walkability analysis, but most of them do not have many amenities, or even signage that identifies them as public places, as not all are dedicated (that is, with a deed restricting its use for a public park) as park space. The Parks Department has begun efforts to dedicate all these areas as parks. Following the completion of that process, the mini-parks should receive signage and additional amenities to identify them as city parks and enhance their function as neighborhood green space.

Benefits of Birmingham's Urban Forest

Communities around the US are increasingly starting to think of trees as a key part of the stormwater infrastructure system. Trees act as a "living utility" by intercepting stormwater and absorbing it before it becomes a burden on municipal pipes and waterways.

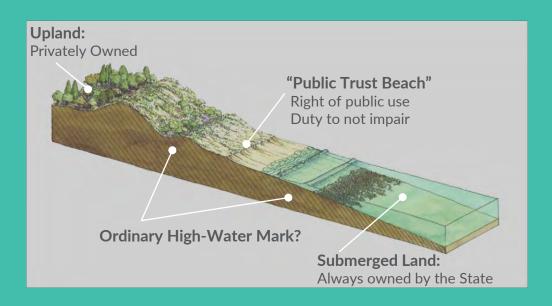
Birmingham's urban forest is already a key element of its green infrastructure. An inventory of the city's trees is in process (15,547 trees have been inventoried within the city along streets and in select parks so far). These trees provide the following benefits:

,189,646	2,771,413	12,683,407
ounds	gallons	gallons
f carbon loxide is equestered nnually	of runoff is avoided annually	of rainfall is intercepted annually

Case Study: Sustainable Rochester

A	Env	ironmental Health	PRIORITY	TIMEFRAME	PARTNERSHIPS
ACTIONS	A.1	Consider developing a green initiative program that incentivizes green roofs and/or solar panel titles/roofs.	С	1+ years	CITY, UC, DPW, PC
STRATEGIES +	A.2	Identify high priority parks and open space activities in and near Downtown and continue to maintain a current Parks and Recreation Plan.	С	1+ years	CITY, DPW
STR	A.3	Develop a Citywide geolocated tree inventory and update tree mitigation requirements in the Zoning Ordinance.	С	1+ years	CITY, DPW
	A.4	Continue to work with the Clinton River Watershed Council in evaluating projects that affect the Sustainable Rochester development indicators.	8	1 year	CITY, DPW, CRWC

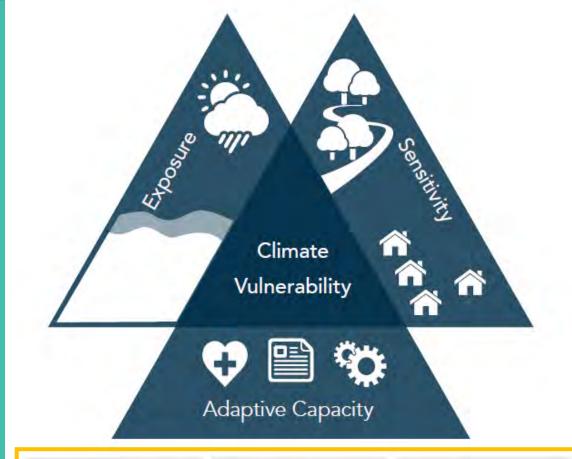
DEVELOPMENT COMPONENT	INDICATOR	BASELINE	TARGET / FUTURE TREND
1 4	1.1 Regional Percent of Land Use: Impervious Surfaces	36.6%	Reduce
Development Balance	1.2 Local Parks and Open Space Acres / 1,000 residents	24.8 acres / 1,000 residents	10% Increase
2	2.1 Regional Percent of Land Use: Tree Canopy	31.1%	Grow
Natural Features Protection	2.2 Local Net Tree Change	Site specific	15% increase in total number of trees
3 Watershed	3.1 Regional Beneficial Use Impairments (BUI) of the Clinton River Watershed	8 BUIs	Reduce
Health	3.2 Local Development within Flood Hazard Zones	Existing development within flood hazard zones	0% net increase



What's up with this weather lately?

Michigan is already one of the rainiest states in the U.S. and will likely stay that way with rising levels of precipitation and severe storms. Aged infrastructure and traditional development patterns within sensitive areas exacerbates runoff, flooding, and shoreline degradation.

- Rain gardens / bioswales
- Stormwater collection
- Permeable surfaces


- Capital improvements plan prioritize infrastructure upgrades
- Low-Impact Design, green infrastructure
- Inspect privately-owned infrastructure
- Developer-funded CIA, EIA for projects to determine impact / capacity
- No-Build Zones public / private conservation areas, increased setbacks
- Hazard Mitigation Plan, scenario planning

Relationship to Public Health & Climate Resiliency

- Reducing exposure to erosion, flooding, and contamination (setbacks, density/impervious limits, sanitary/storm systems, vegetative buffers)
- Protecting life, property, and biodiversity (emergency management, capital outlay, preservation)
- Engaged and informed public (coastal stewardship, clear policy and regulations, environmental impact analyses)

EXPOSURE

- Area impacted by climate hazard(s)
- Severity of climate hazard(s)
- Frequency of climate hazards

ADAPTIVE CAPACITY

- Mobilizable response resources
- Information, skills & communication
- Institutional and social capital

SENSITIVITY

- Household & community characteristics
- Quality of housing & other physical systems
- Functionality of, access to services & utilities

MME Summer Workshop | July 16-19, 2024

Case Study: Birmingham

Challenge(s)

- Built-out, aged infrastructure
- Rising flood risks
- Continued funding, maintenance (MDNR)

Solution(s)

 Low-Impact Design / Green Infrastructure can supplement traditional infrastructure, absorb and retain water, and requires less regular maintenance.

What are the benefits of

GREEN INFRASTRUCTURE?

Water Quality

Green infrastructure reduces the amount of polluted stormwater.

Reduce Flooding

Green infrastructure can reduce flood risk by slowing and reducing stormwater runoff into waterways.

Water Supply

Harvesting rainwater is good for outdoor irrigation and some indoor uses. Water infiltrated into the soil recharges groundwater and increases flow into the rivers.

Quality of Life

Green infrastructure provides aesthetic benefits to the area by increasing the amount of a community's green space.

Recreation

Green infrastructure can provide recreational and tourism opportunities including increased access to hiking, hunting, fishing, and bird watching.

Economic Growth

Green infrastructure can increase residential property values located near trails, parks, and waterways.

Traffic Calming

Green infrastructure techniques along roads can also be used to slow traffic and provide a buffer between the roadway and pedestrians.

Habitat Connections

Green infrastructure can provide needed links in habitat corridors to strengthen and support rare and important plant and animal areas in the community.

Air Quality

Increased vegetation positively impacts air quality through carbon sequestration, the capture of fugitive dust, and the removal of air pollutants.

Individual Health

Green infrastructure encourages outdoor physical activity, which has a positive impact on fighting obesity and chronic disease.

Public Finances

Green infrastructure can reduce a community's infrastructure costs by using natural systems rather than built systems, and by avoiding building lengthy new stormwater pipes.

Energy and Climate

Implementing techniques such as green roofs, increased tree plantings around buildings, converting turfgrass to nomow areas, and reclaiming stormwater for use onsite can reduce energy consumption and save money.

MME Summer Workshop | July 16-19, 2024

Case Study: Birmingham

Tree Canopy:

Expressed as number of trees/acre. (Collected: Perimeter Tree Count, Interior Tree Count, Estimated Canopy %)

Recycling Facilities:

Yes/No/How Many

Gardens and Landscaping:

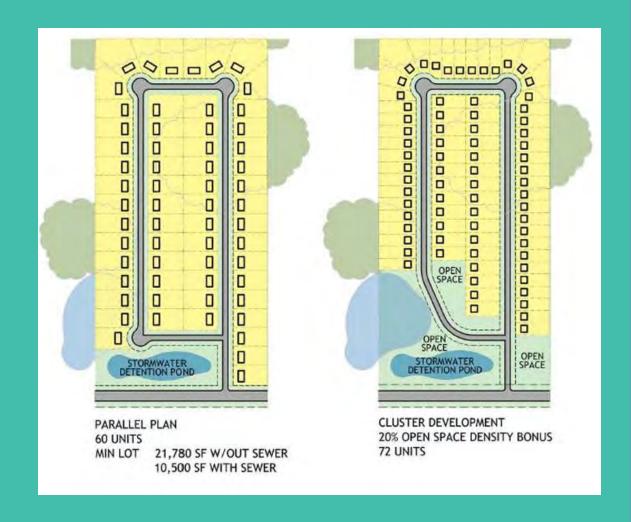
Native Plantings, Decorative Planters

Bicycle Facilities:

Yes/No. What is Present

Green Stormwater Infrastructure:

Yes/No. What is Present


Case Study: Ganges Township

Challenge(s)

- Sensitive dunes and waterways
- Lack of public sanitary/storm systems (relying on private or septic systems)

Solution(s)

- Prioritize cluster housing and "long lot" development near sensitive ecosystems.
- Establish waterfront setbacks to the OHWM; consider shoreline overlay district(s).
- Collaboration with shoreline HOAs to achieve cohesive protections.

Case Study: Sustainable Rochester

D	Public Services		PRIORITY	TIMEFRAME	PARTNERSHIPS
STRATEGIES + ACTIONS	D.1	Identify the top 5 public works projects outlined in the City's asset management planning process that will most benefit Rochester's long-term sustainability and work to develop partnerships for implementation.	В	1 year	CITY, DPW, CC
	D.2	Consider the adoption of Smart City infrastructure initiatives.	С	1+ years	CITY, DPW, CC
	D.3	Address City emergency response times through operational and capital investment and update Sustainability measures as improvements are made.	В	1 year	CITY, CC

DEVELOPMENT COMPONENT	INDICATOR	BASELINE	TARGET/ FUTURE TREND	
10	10.1 Regional Municipal Water and Sewer Expenditures Per Capita	\$406.13 water and sewer expenditures / capita	Maintain baseline	
Pipe Maintenance	10.2 Local Linear Feet of Pipe	Combined Pipe Length – 398,723 linear ft.	2% increase	
	11.1 Regional Age of Water and Sanitary System	1869	Reduce	
11 Pipe Condition	11.2 Local Percent of Deficient / Critical Pipes	High Risk Sanitary Pipe – 9,985 linear ft. Water Pipes < than 8 tn. (diameter) – 88,207 linear ft.	Sanitary – reduce 15% Water – reduce 5%	
12	12.1 Regional U.S. Census Urbanized Area	Rochester within UZA and half of Oakland Township	Maintain baseline	
System Capacity	12.2 Local Net Change in ERU	At capacity	0% change	

- Identify, Quantify, and Analyze
- Build Consensus
- Articulate Goals and Objectives
- Stand By Your Plan

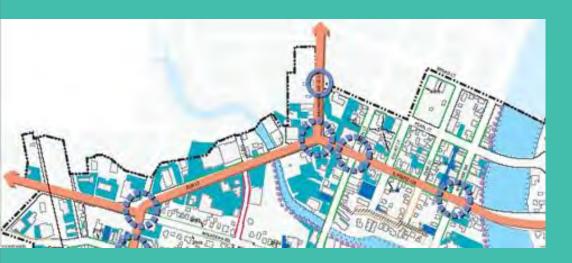
- Identify, Quantify, and Analyze
- Build Consensus
- Articulate Goals and Objectives
- Stand By Your Plan

- Focus on data, not politics (not why its happening, but what is happening)
- Talk about <u>impacts</u> of climate change without saying the word climate change (e.g., increased SW runoff)
- <u>Visual cues</u> of recent events (e.g. flooding damage, etc.)

- Identify, Quantify, and Analyze
- Build Consensus
- Articulate Goals and Objectives
- Stand By Your Plan

- <u>Educate</u> throughout, but especially at the beginning and remember: education <u>≠</u> policy change
- Presentations from scientific <u>experts</u>
- Effective planning appeals to <u>emotions</u>
- Be sensitive of **pre-existing values** and world view.
- Stakeholders can describe how the climate is impacting their job
- Farmers
- Public Works officials
- Emergency responders
- Public health officials
- Natural resource managers

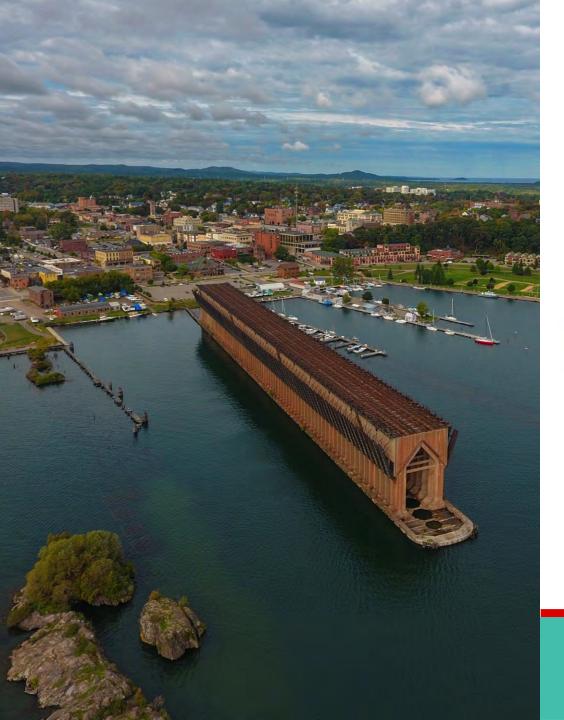
- Identify, Quantify, and Analyze
- Build Consensus
- Articulate Goals and Objectives
- Stand By Your Plan



- Focus on <u>local solutions</u> to global issues global discussions of climate change are not very productive at the local level
- Recognize both **immediate** and **long-term** impacts.
- Consider <u>tradeoffs</u> (e.g. waterfront setbacks vs. the fiscal benefit of waterfront development)
- Focus on identifying <u>actions of no regret</u> and nonclimate benefits of actions.
- Acknowledge the <u>uncertainty</u> of climate science
- Keep terms and explanations **simple**

- Identify, Quantify, and Analyze
- Build Consensus
- Articulate Goals and Objectives
- Stand By Your Plan

Planning is a **public** process; be prepared to address:


- Opposition/Skepticism/Disinterest
- Powerful interests
- Existing development patterns
- Outdated regulations
- Lack of coordination between communities

Implement, Evaluate, and Modify...develop or update:

- Zoning Ordinance
- Capital Improvements Plan
- Hazard Mitigation Plan
- Parks and Recreation Plan
- Economic Development Plan
- Development Review Processes

Thank You!

Questions?

Gage Belko, AICP

Associate Planner

gbelko@mcka.com

248.596.0920

MME Summer Workshop | July 16-19, 2024